Mutual Entropy in Quantum Information and Information Genetics

نویسنده

  • Masanori OHYA
چکیده

After Shannon, entropy becomes a fundamental quantity to describe not only uncertainity or chaos of a system but also information carried by the system. Shannon’s important discovery is to give a mathematical expression of the mutual entropy (information), information transmitted from an input system to an output system, by which communication processes could be analyzed on the stage of mathematical science. In this paper, first we review the quantum mutual entropy and discuss its uses in quantum information theory, and secondly we show how the classical mutual entropy can be used to analyze genomes, in particular, those of HIV.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quantum Information Chapter 10. Quantum Shannon Theory

Contents 10 Quantum Shannon Theory 1 10.1 Shannon for Dummies 2 10.1.1 Shannon entropy and data compression 2 10.1.2 Joint typicality, conditional entropy, and mutual information 6 10.1.3 Distributed source coding 8 10.1.4 The noisy channel coding theorem 9 10.2 Von Neumann Entropy 16 10.2.1 Mathematical properties of H(ρ) 18 10.2.2 Mixing, measurement, and entropy 20 10.2.3 Strong subadditivit...

متن کامل

Fundamentals of Quantum Mutual Entropy and Capacity

The study of mutual entropy (information) and capacity in classical system was extensively done after Shannon by several authors like Kolmogorov [12] and Gelfand [7]. In quantum systems, there have been several definitions of the mutual entropy for classical input and quantum output [5, 8, 9, 14]. In 1983, the author defined [21] the fully quantum mechanical mutual entropy by means of the relat...

متن کامل

Faithful Squashed Entanglement with applications to separability testing and quantum Merlin-Arthur games

We derive the lower bound on squashed entanglement from a lower bound on the quantum conditional mutual information, which corresponds to the amount by which strong subadditivity of von Neumann entropy fails to be saturated. Our result therefore sheds light on the structure of states that almost satisfy strong subadditivity with equality. The proof of the lower bound is based on two recent resu...

متن کامل

Efficient optimization of the quantum relative entropy

Many quantum information measures can be written as an optimization of the quantum relative entropy between sets of states. For example, the relative entropy of entanglement of a state is the minimum relative entropy to the set of separable states. The various capacities of quantum channels can also be written in this way. We propose a unified framework to numerically compute these quantities u...

متن کامل

A MATHEMATICAL FOUNDATION OF QUANTUM INFORMATION AND QUANTUM COMPUTER -on quantum mutual entropy and entanglement-

The study of mutual entropy (information) and capacity in classical system was extensively done after Shannon by several authors like Kolmogorov [16] and Gelfand [10]. In quantum systems, there have been several definitions of the mutual entropy for classical input and quantum output [5, 11, 12, 17]. In 1983, the author defined [21] the fully quantum mechanical mutual entropy by means of the re...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004